Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis[1-ethyl-6-fluoro-7-(4-methylpiperazin-4-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato]cobalt(II) octahydrate

Zhe An,* Jing Huang and Wei Qi

School of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China

Correspondence e-mail: anzhe6409@sina.com

Received 22 June 2007; accepted 23 June 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.103; data-to-parameter ratio = 12.5.

In the title compound, $[Co(C_{17}H_{19}FN_3O_3)_2(H_2O)_2]\cdot 8H_2O$, the Co^{II} atom (site symmetry $\overline{1}$) exhibits a distorted octahedral geometry that is defined by two bidentate *O,O*-bonded 1-ethyl-6-fluoro-7-(4-methylpiperazin-4-yl)-4-oxo-1,4-dihydro-quinoline-3-carboxylate (pef) monoanions and two water molecules. A network of $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds help to establish the crystal packing.

Related literature

For a silver complex of the same ligand, see: Baenziger *et al.* (1986). For background on the medicinal uses of the free ligand, see Mizuki *et al.* (1996).

Experimental

Crystal data

 $\begin{bmatrix} Co(C_{17}H_{19}FN_3O_3)_2(H_2O)_2 \end{bmatrix} \cdot 8H_2O \\ M_r = 903.79 \\ \text{Triclinic, } P\overline{1} \\ a = 8.889 (5) \text{ Å} \\ b = 10.231 (5) \text{ Å} \\ c = 12.911 (5) \text{ Å} \\ \alpha = 73.287 (5)^{\circ} \\ \beta = 72.040 (5)^{\circ} \end{bmatrix}$

 $\gamma = 85.603 (5)^{\circ}$ $V = 1069.7 (9) Å^3$ Z = 1Mo K α radiation $\mu = 0.48 \text{ mm}^{-1}$ T = 295 (2) K $0.34 \times 0.26 \times 0.17 \text{ mm}$ $R_{\rm int} = 0.015$

5428 measured reflections

3756 independent reflections

3380 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\min} = 0.853, T_{\max} = 0.922
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.103$	independent and constrained
S = 1.10	refinement
3756 reflections	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
300 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
15 restraints	

Table 1

Selected bond lengths (Å).

Co1-O3	2.0206 (15)	Co1 - O5W	2.180 (2)
Co1-O1	2.0598 (16)		

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4W−H4W1···O1W	0.844 (10)	2.083 (12)	2.879 (3)	157 (2)
$O3W - H3W1 \cdots O1W^{i}$	0.848 (10)	2.035 (12)	2.859 (3)	164 (3)
O3W−H3W2···O2 ⁱⁱ	0.851 (10)	1.899 (10)	2.747 (2)	174 (3)
$O1W - H1W1 \cdots O1^{iii}$	0.846 (10)	1.911 (11)	2.754 (2)	175 (2)
$O1W - H1W2 \cdots O3W^{iv}$	0.849 (10)	2.129 (18)	2.877 (3)	147 (2)
$O2W - H2W1 \cdots O3W$	0.840 (9)	1.979 (11)	2.813 (3)	171 (3)
$O2W - H2W2 \cdots O5W$	0.840 (9)	2.066 (11)	2.904 (3)	175 (2)
$O5W - H5W1 \cdots N3^{v}$	0.862 (10)	2.029 (12)	2.870 (3)	165 (3)
$O5W - H5W2 \cdots O4W^{vi}$	0.856 (10)	2.064 (11)	2.918 (3)	175 (2)
$O4W - H4W2 \cdot \cdot \cdot O2W^{vii}$	0.835 (10)	1.980 (11)	2.787 (3)	162 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z; (iii) x, y, z + 1; (iv) x, y - 1, z + 1; (v) x + 1, y, z - 1; (vi) x, y, z - 1; (vii) -x + 2, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors thank the Innovation Science Foundation of Harbin Medical University for financial support (grant No. 060041).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2455).

References

- Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509. Bruker (1998). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37, Suppl. A, 41–45.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2009 [doi:10.1107/S1600536807030681]

Diaquabis[1-ethyl-6-fluoro-7-(4-methylpiperazin-4-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato]cobalt(II) octahydrate

Z. An, J. Huang and W. Qi

Comment

Pefloxacin (Hpef, 1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki *et al.*, 1996). The silver(I) derivative of pefloxacin have been reported (Baenziger *et al.*, 1986). The title cobalt(II) derivative, (I), is reported here.

The Co^{II} atom (site symmetry T) in (I) exhibits a distorted octahedral geometry, defined by six oxygen atoms from two pefloxacin ligands and two water (Table 1, Fig. 1). The component species in (I) are linked by the O—H…O and O—H…N hydrogen bonds involving all the potential donors, generating a three-dimensional supramolecular network.

Experimental

A mixture of $Co(CH_3COO)_2$ ·4H₂O (0.062 g, 0.25 mmol), Hpef (0.17 g, 0.5 mmol) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was heated to 433 K for 72 h under autogenous pressure. Pink blocks of (I) suitable for X-ray analysis were obtained from the reaction mixture upon cooling.

Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms on the water molecules were located in a difference map and refined with a distance restraint of 0.85 (1)Å and the constraint $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) 1 - x, 1 - y, -z.

Diaquabis[1-ethyl-6-fluoro-7-(4-methylpiperazin-4-yl)-4-oxo-1,4- dihydroquinoline-3-carboxylato]cobalt(II) oc-tahydrate

Crystal data $[Co(C_{17}H_{19}FN_3O_3)_2(H_2O)_2] \cdot 8H_2O$ Z = 1 $M_r = 903.79$ $F_{000} = 477$

Triclinic, PI	$D_{\rm x} = 1.403 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
a = 8.889 (5) Å	Cell parameters from 2882 reflections
b = 10.231 (5) Å	$\theta = 1.7 - 25.0^{\circ}$
c = 12.911 (5) Å	$\mu = 0.48 \text{ mm}^{-1}$
$\alpha = 73.287 \ (5)^{\circ}$	T = 295 (2) K
$\beta = 72.040 \ (5)^{\circ}$	Block, pink
$\gamma = 85.603 (5)^{\circ}$	$0.34 \times 0.26 \times 0.17 \text{ mm}$
$V = 1069.7 (9) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	3756 independent reflections
Radiation source: fine-focus sealed tube	3380 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 295(2) K	$\theta_{max} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 10$
$T_{\min} = 0.853, T_{\max} = 0.922$	$k = -12 \rightarrow 11$
5428 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2 + 0.3439P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
3756 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
300 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
15 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.5000	0.5000	0.0000	0.02908 (14)
C1	0.5131 (2)	0.2447 (2)	0.19334 (17)	0.0301 (4)
C2	0.4572 (2)	0.3295 (2)	0.27595 (16)	0.0283 (4)
C3	0.4449 (2)	0.2636 (2)	0.38738 (17)	0.0307 (4)
Н3	0.4774	0.1733	0.4036	0.037*
C4	0.3317 (2)	0.45088 (19)	0.45597 (16)	0.0273 (4)

C5	0.2592 (2)	0.5077 (2)	0.54588 (16)	0.0296 (4)
H5	0.2524	0.4571	0.6197	0.036*
C6	0.1977 (2)	0.6377 (2)	0.52631 (16)	0.0296 (4)
C7	0.2172 (3)	0.7112 (2)	0.41160 (18)	0.0347 (5)
C8	0.2845 (2)	0.6589 (2)	0.32356 (17)	0.0328 (4)
H8	0.2920	0.7108	0.2500	0.039*
C9	0.3434 (2)	0.52531 (19)	0.34378 (16)	0.0273 (4)
C10	0.4125 (2)	0.4693 (2)	0.24821 (16)	0.0274 (4)
C11	0.3830 (3)	0.2310 (2)	0.58984 (17)	0.0361 (5)
H11A	0.4012	0.2874	0.6338	0.043*
H11B	0.4663	0.1640	0.5843	0.043*
C12	0.2252 (4)	0.1581 (3)	0.6505 (2)	0.0605 (7)
H12A	0.1427	0.2241	0.6585	0.091*
H12B	0.2258	0.1022	0.7242	0.091*
H12C	0.2069	0.1018	0.6075	0.091*
C13	0.1324 (2)	0.6346 (2)	0.72586 (17)	0.0333 (4)
H13A	0.2394	0.6045	0.7229	0.040*
H13B	0.0627	0.5552	0.7595	0.040*
C14	0.0828 (3)	0.7342 (2)	0.79736 (18)	0.0399 (5)
H14A	0.0900	0.6906	0.8730	0.048*
H14B	0.1540	0.8127	0.7642	0.048*
C15	-0.0391 (3)	0.7464 (2)	0.61697 (19)	0.0386 (5)
H15A	-0.1096	0.6675	0.6488	0.046*
H15B	-0.0455	0.7914	0.5413	0.046*
C16	-0.0896(3)	0.8433 (2)	0.68983 (19)	0.0393 (5)
H16A	-0.0223	0.9242	0.6556	0.047*
H16B	-0.1975	0.8713	0.6937	0.047*
C17	-0.1262(4)	0.8792 (3)	0.8708 (2)	0.0576 (7)
H17A	-0.0605	0.9595	0.8328	0.086*
H17B	-0.1137	0.8398	0.9446	0.086*
H17C	-0.2348	0 9033	0.8782	0.086*
F1	0 16971 (19)	0.84283 (13)	0 38897 (11)	0.0547 (4)
N1	0.3904 (2)	0.31782 (16)	0.47450 (13)	0.0301 (4)
N2	0.12440(19)	0 70204 (17)	0.61093 (14)	0.0304 (4)
N3	-0.0797(2)	0 77955 (18)	0.80430 (15)	0.0380 (4)
01	0.53493(18)	0 30345 (14)	0.08824(12)	0.0374(3)
02	0.53795(10)	0.12126 (15)	0.23227(13)	0.0371(3)
03	0.3327(2) 0.42376(18)	0 54564 (14)	0.14985(11)	0.0358(3)
01W	0.6676 (2)	0.14217(17)	0.94617 (14)	0.0330(3)
02W	0.0070(2) 0.7499(2)	0.66234 (18)	0.16054 (15)	0.0491 (4)
03W	0.779(2)	0.90613 (18)	0.13899 (16)	0.0523(4)
O4W	0.9708(2)	0.3290(2)	0.100000(10)	0.0525(1) 0.0768(7)
O5W	0.74297(18)	0.55369(16)	-0.02246(13)	0.0414(4)
H4W1	0.7(2)7(10)	0.35307(10)	0.904 (2)	0.062*
H3W1	0 493 (2)	0.889 (3)	0.128 (2)	0.062*
H3W2	0.561 (3)	0.969 (2)	0.172 (2)	0.062*
H1W1	0.628 (3)	0.1962(19)	0.9860 (18)	0.062*
H1W2	0.680 (3)	0.0644(14)	0.9890 (18)	0.062*
H2W1	0.708 (3)	0 7396 (15)	0.151 (2)	0.062*
11- 11 1	0.700 (3)	0.7570 (15)	0.101 (2)	0.002

supplementary materials

H2W2	0.752 (3)	0.627 (2)	0.1088 (18)	0.062*
H5W1	0.781 (3)	0.6243 (15)	-0.0782 (16)	0.062*
H5W2	0.792 (3)	0.4842 (15)	-0.041 (2)	0.062*
H4W2	1.0178 (12)	0.314 (2)	0.884 (2)	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0346 (2)	0.0295 (2)	0.0213 (2)	0.00173 (15)	-0.00322 (15)	-0.01031 (15)
C1	0.0304 (10)	0.0307 (11)	0.0299 (11)	0.0019 (8)	-0.0058 (8)	-0.0135 (9)
C2	0.0277 (10)	0.0298 (10)	0.0279 (10)	0.0008 (8)	-0.0054 (8)	-0.0119 (8)
C3	0.0336 (11)	0.0263 (10)	0.0323 (11)	0.0036 (8)	-0.0083 (9)	-0.0110 (8)
C4	0.0281 (10)	0.0274 (10)	0.0265 (10)	-0.0013 (8)	-0.0063 (8)	-0.0093 (8)
C5	0.0332 (11)	0.0311 (10)	0.0228 (9)	-0.0004 (8)	-0.0051 (8)	-0.0083 (8)
C6	0.0300 (10)	0.0328 (10)	0.0257 (10)	-0.0007 (8)	-0.0041 (8)	-0.0119 (8)
C7	0.0434 (12)	0.0265 (10)	0.0310 (11)	0.0065 (9)	-0.0073 (9)	-0.0091 (8)
C8	0.0412 (12)	0.0307 (11)	0.0226 (10)	0.0004 (9)	-0.0057 (8)	-0.0058 (8)
C9	0.0291 (10)	0.0272 (10)	0.0245 (10)	-0.0018 (8)	-0.0039 (8)	-0.0093 (8)
C10	0.0263 (10)	0.0306 (10)	0.0248 (10)	-0.0028 (8)	-0.0044 (8)	-0.0095 (8)
C11	0.0495 (13)	0.0325 (11)	0.0284 (11)	0.0055 (9)	-0.0165 (9)	-0.0078 (9)
C12	0.0781 (19)	0.0554 (16)	0.0415 (14)	-0.0244 (14)	-0.0235 (14)	0.0088 (12)
C13	0.0349 (11)	0.0365 (11)	0.0264 (10)	0.0047 (9)	-0.0061 (8)	-0.0103 (8)
C14	0.0455 (13)	0.0460 (13)	0.0294 (11)	-0.0001 (10)	-0.0080 (10)	-0.0158 (10)
C15	0.0357 (11)	0.0454 (13)	0.0379 (12)	0.0105 (10)	-0.0116 (9)	-0.0185 (10)
C16	0.0369 (12)	0.0361 (12)	0.0402 (12)	0.0077 (9)	-0.0033 (9)	-0.0139 (10)
C17	0.0745 (18)	0.0459 (14)	0.0454 (14)	0.0048 (13)	0.0045 (13)	-0.0272 (12)
F1	0.0874 (11)	0.0312 (7)	0.0354 (7)	0.0207 (7)	-0.0088(7)	-0.0094 (6)
N1	0.0369 (9)	0.0278 (8)	0.0248 (8)	0.0038 (7)	-0.0082 (7)	-0.0082 (7)
N2	0.0307 (9)	0.0346 (9)	0.0254 (8)	0.0057 (7)	-0.0046 (7)	-0.0129 (7)
N3	0.0420 (10)	0.0338 (9)	0.0326 (9)	0.0018 (8)	0.0026 (8)	-0.0157 (8)
01	0.0512 (9)	0.0331 (8)	0.0268 (8)	0.0062 (7)	-0.0065 (6)	-0.0137 (6)
O2	0.0740 (11)	0.0291 (8)	0.0368 (8)	0.0121 (7)	-0.0158 (8)	-0.0143 (7)
03	0.0518 (9)	0.0302 (7)	0.0214 (7)	0.0047 (6)	-0.0051 (6)	-0.0086 (6)
O1W	0.0664 (11)	0.0362 (9)	0.0383 (9)	0.0063 (8)	-0.0065 (8)	-0.0170 (7)
O2W	0.0560 (11)	0.0459 (10)	0.0481 (10)	0.0083 (8)	-0.0200 (8)	-0.0141 (8)
O3W	0.0652 (12)	0.0428 (10)	0.0590 (11)	0.0121 (8)	-0.0257 (9)	-0.0248 (8)
O4W	0.0406 (10)	0.0666 (14)	0.1171 (19)	-0.0018 (9)	-0.0131 (12)	-0.0269 (13)
O5W	0.0394 (9)	0.0383 (8)	0.0421 (9)	-0.0033 (7)	-0.0068 (7)	-0.0096 (7)

Geometric parameters (Å, °)

Co1—O3 ⁱ	2.0206 (15)	C12—H12B	0.9600
Co1—O3	2.0206 (15)	C12—H12C	0.9600
Co1—O1	2.0598 (16)	C13—N2	1.467 (3)
Co1—O1 ⁱ	2.0598 (16)	C13—C14	1.519 (3)
Co1—O5W	2.180 (2)	C13—H13A	0.9700
Co1—O5W ⁱ	2.180 (2)	С13—Н13В	0.9700
C1—O2	1.237 (3)	C14—N3	1.467 (3)

C1—O1	1.275 (2)	C14—H14A	0.9700
C1—C2	1.509 (3)	C14—H14B	0.9700
C2—C3	1.376 (3)	C15—N2	1.475 (3)
C2—C10	1.428 (3)	C15—C16	1.509 (3)
C3—N1	1.338 (3)	C15—H15A	0.9700
С3—Н3	0.9300	C15—H15B	0.9700
C4—N1	1.401 (3)	C16—N3	1.461 (3)
C4—C5	1.403 (3)	C16—H16A	0.9700
C4—C9	1.405 (3)	C16—H16B	0.9700
C5—C6	1.383 (3)	C17—N3	1.472 (3)
С5—Н5	0.9300	C17—H17A	0.9600
C6—N2	1.400 (2)	С17—Н17В	0.9600
C6—C7	1.418 (3)	C17—H17C	0.9600
С7—С8	1.348 (3)	O1W—H1W1	0.846 (10)
C7—F1	1.356 (2)	O1W—H1W2	0.849 (10)
C8—C9	1.407 (3)	O2W—H2W1	0.840 (19)
С8—Н8	0.9300	O2W—H2W2	0.84 (2)
C9—C10	1.454 (3)	O3W—H3W1	0.848 (10)
C10—O3	1.263 (2)	O3W—H3W2	0.851 (10)
C11—N1	1.483 (3)	O4W—H4W1	0.844 (10)
C11—C12	1.511 (3)	O4W—H4W2	0.835 (10)
C11—H11A	0.9700	O5W—H5W1	0.862 (10)
C11—H11B	0.9700	O5W—H5W2	0.856 (10)
C12—H12A	0.9600		
O3 ⁱ —Co1—O3	180.0	H12A—C12—H12B	109.5
O3 ⁱ —Co1—O3 O3 ⁱ —Co1—O1	180.0 92.09 (6)	H12A—C12—H12B C11—C12—H12C	109.5 109.5
O3 ⁱ —Co1—O3 O3 ⁱ —Co1—O1 O3—Co1—O1	180.0 92.09 (6) 87.91 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C	109.5 109.5 109.5
$O3^{i}$ —Co1—O3 O3 ⁱ —Co1—O1 O3—Co1—O1 O3 ⁱ —Co1—O1 ⁱ	180.0 92.09 (6) 87.91 (6) 87.91 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C	109.5 109.5 109.5 109.5
$O3^{i}$ —Co1—O3 O3 ⁱ —Co1—O1 O3—Co1—O1 O3 ⁱ —Co1—O1 ⁱ O3—Co1—O1 ⁱ	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14	109.5 109.5 109.5 109.5 109.25 (17)
$\begin{array}{c} O3^{i}-C01-O3\\ O3^{i}-C01-O1\\ O3-C01-O1\\ O3^{i}-C01-O1^{i}\\ O3-C01-O1^{i}\\ O1-C01-O1^{i}\\ \end{array}$	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A	109.5 109.5 109.5 109.5 109.25 (17) 109.8
$\begin{array}{c} O3^{i}-Co1-O3\\ O3^{i}-Co1-O1\\ O3-Co1-O1\\ O3^{i}-Co1-O1^{i}\\ O3-Co1-O1^{i}\\ O1-Co1-O1^{i}\\ O3^{i}-Co1-O1^{i}\\ O3^{i}-Co1-O5W\\ \end{array}$	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8
$\begin{array}{c} O3^{i}-Co1-O3\\ O3^{i}-Co1-O1\\ O3-Co1-O1\\ O3^{i}-Co1-O1^{i}\\ O3-Co1-O1^{i}\\ O1-Co1-O1^{i}\\ O3^{i}-Co1-O5W\\ O3-Co1-O5W\\ O$	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8
$\begin{array}{c} O3^{i}-Co1-O3\\ O3^{i}-Co1-O1\\ O3-Co1-O1\\ O3^{i}-Co1-O1^{i}\\ O3-Co1-O1^{i}\\ O1-Co1-O1^{i}\\ O3^{i}-Co1-O5W\\ O3-Co1-O5W\\ O1-Co1-O5W\\ O$	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8
$\begin{array}{c} O3^{i}-Co1-O3\\ O3^{i}-Co1-O1\\ O3-Co1-O1\\ O3^{i}-Co1-O1^{i}\\ O3-Co1-O1^{i}\\ O1-Co1-O1^{i}\\ O3^{i}-Co1-O5W\\ O3-Co1-O5W\\ O1-Co1-O5W\\ O1-Co1-O5W\\ O1^{i}-Co1-O5W\\ O1^{i}-CO$	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B	109.5 109.5 109.5 109.5 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.8
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 91.35 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13	109.5 109.5 109.5 109.5 (17) 109.8 109.8 109.8 109.8 109.8 109.8 108.3 110.74 (17)
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 91.35 (6) 88.65 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A	109.5 109.5 109.5 109.5 (17) 109.8 109.8 109.8 109.8 109.8 109.8 108.3 110.74 (17) 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 91.35 (6) 88.65 (6) 88.65 (6) 89.93 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A	109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 109.8 108.3 110.74 (17) 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1 ⁱ O3—Co1—O1 ⁱ O1—Co1—O1 ⁱ $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 88.65 (6) 88.65 (6) 88.65 (6) 89.93 (6) 90.07 (6)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A N3—C14—H14A	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 108.3 110.74 (17) 109.5 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 88.65 (6) 88.65 (6) 88.65 (6) 88.93 (6) 90.07 (6) 180.0	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A N3—C14—H14B C13—C14—H14B	109.5 109.5 109.5 109.5 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3^{i}$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O3—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 88.65 (6) 89.93 (6) 90.07 (6) 180.0 123.93 (18)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A C13—C14—H14B H14A—C14—H14B	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5 109.5 109.5 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O2—C1—O1 O2—C1—O1 O2—C1—C2	180.0 92.09 (6) 87.91 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 90.07 (6) 88.65 (6) 89.93 (6) 90.07 (6) 180.0 123.93 (18) 117.69 (18)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A N3—C14—H14B H14A—C14—H14B H14A—C14—H14B N2—C15—C16	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 108.3 110.74 (17) 109.5 109.5 109.5 109.5 108.1 110.02 (18)
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O1^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O2—C1—O1 O2—C1—C2	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 91.35 (6) 88.65 (6) 88.93 (6) 90.07 (6) 180.0 123.93 (18) 117.69 (18) 118.37 (17)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A C13—C14—H14B H14A—C14—H14B H14A—C14—H14B N2—C15—C16 N2—C15—H15A	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3$ —Co1—O1^{i} $O3$ —Co1—O1^{i} $O1$ —Co1—O1^{i} $O3^{i}$ —Co1—O5W O3—Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O2—C1—O1 O2—C1—C2 O1—C1—C2 C3—C2—C10	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 91.35 (6) 88.65 (6) 89.93 (6) 90.07 (6) 180.0 123.93 (18) 117.69 (18) 118.37 (17) 118.28 (17)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A N2—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—C13 N3—C14—H14A C13—C14—H14A C13—C14—H14B C13—C14—H14B H14A—C14—H14B H14A—C14—H14B N2—C15—C16 N2—C15—H15A C16—C15—H15A	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.7
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3$ —Co1—O1^{i} $O3$ —Co1—O1^{i} O1—Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O1^{i}$ —Co1—O5W $O3^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O2—C1—O1 O2—C1—O1 O2—C1—C2 O1—C1—C2 C3—C2—C1	180.0 92.09 (6) 87.91 (6) 92.09 (6) 180.0 88.65 (6) 91.35 (6) 90.07 (6) 89.93 (6) 90.07 (6) 180.0 123.93 (18) 117.69 (18) 118.28 (17) 116.25 (17)	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A C13—C14—H14B H14A—C14—H14B H14A—C14—H14B N2—C15—C16 N2—C15—H15A C16—C15—H15A N2—C15—H15A	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 108.3 110.74 (17) 109.5 109.5 109.5 109.5 109.5 108.1 110.02 (18) 109.7 109.7
$O3^{i}$ —Co1—O3 $O3^{i}$ —Co1—O1 O3—Co1—O1 $O3$ —Co1—O1^{i} $O3$ —Co1—O1^{i} O1—Co1—O5W O1—Co1—O5W $O1^{i}$ —Co1—O5W $O1^{i}$ —Co1—O5W ⁱ O3—Co1—O5W ⁱ O3—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O1—Co1—O5W ⁱ O2—C1—O1 O2—C1—C1 $O5W^{-}$ CO1—C2 O3—C2—C10 C3—C2—C1 C10—C2—C1	180.0 $92.09 (6)$ $87.91 (6)$ $92.09 (6)$ 180.0 $88.65 (6)$ $91.35 (6)$ $90.07 (6)$ $89.93 (6)$ $91.35 (6)$ $89.93 (6)$ $90.07 (6)$ 180.0 $123.93 (18)$ $117.69 (18)$ $118.37 (17)$ $118.28 (17)$ $116.25 (17)$ $125.44 (17)$	H12A—C12—H12B C11—C12—H12C H12A—C12—H12C H12B—C12—H12C N2—C13—C14 N2—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B N3—C14—C13 N3—C14—H14A C13—C14—H14A N3—C14—H14B H14A—C14—H14B H14A—C14—H14B N2—C15—C16 N2—C15—H15A C16—C15—H15B C16—C15—H15B C16—C15—H15B	109.5 109.5 109.5 109.5 109.25 (17) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.5 109.5 109.5 109.5 109.5 109.5 108.1 110.02 (18) 109.7 109.7 109.7

supplementary materials

N1—C3—H3	117.1	N3—C16—C15	111.24 (18)
С2—С3—Н3	117.1	N3—C16—H16A	109.4
N1—C4—C5	121.73 (17)	C15—C16—H16A	109.4
N1—C4—C9	117.70 (17)	N3—C16—H16B	109.4
C5—C4—C9	120.55 (18)	C15-C16-H16B	109.4
C6—C5—C4	120.95 (18)	H16A—C16—H16B	108.0
С6—С5—Н5	119.5	N3—C17—H17A	109.5
С4—С5—Н5	119.5	N3—C17—H17B	109.5
C5—C6—N2	124.57 (18)	H17A—C17—H17B	109.5
C5—C6—C7	116.71 (17)	N3—C17—H17C	109.5
N2—C6—C7	118.67 (18)	H17A—C17—H17C	109.5
C8—C7—F1	118.16 (18)	H17B—C17—H17C	109.5
C8—C7—C6	123.67 (18)	C3—N1—C4	119.52 (16)
F1—C7—C6	118.13 (17)	C3—N1—C11	118.58 (16)
С7—С8—С9	119.53 (18)	C4—N1—C11	121.75 (16)
С7—С8—Н8	120.2	C6—N2—C13	117.51 (16)
С9—С8—Н8	120.2	C6—N2—C15	115.44 (16)
C4—C9—C8	118.51 (17)	C13—N2—C15	109.06 (16)
C4—C9—C10	122.62 (17)	C16—N3—C14	109.00 (16)
C8—C9—C10	118.87 (17)	C16—N3—C17	109.03 (18)
O3—C10—C2	126.05 (18)	C14—N3—C17	110.79 (19)
O3—C10—C9	118.16 (18)	C1—O1—Co1	132.96 (12)
C2—C10—C9	115.76 (17)	C10—O3—Co1	129.04 (13)
N1-C11-C12	112.06 (18)	H1W1—O1W—H1W2	109.4 (15)
N1—C11—H11A	109.2	H2W1—O2W—H2W2	112.1 (16)
C12—C11—H11A	109.2	H3W1—O3W—H3W2	109.2 (15)
N1—C11—H11B	109.2	H4W1—O4W—H4W2	112.0 (16)
C12—C11—H11B	109.2	Co1—O5W—H5W1	114.6 (19)
H11A—C11—H11B	107.9	Co1—O5W—H5W2	100.6 (18)
C11—C12—H12A	109.5	H5W1—O5W—H5W2	107.0 (15)
C11—C12—H12B	109.5		
O2—C1—C2—C3	5.2 (3)	C2—C3—N1—C4	3.5 (3)
O1—C1—C2—C3	-176.05 (18)	C2-C3-N1-C11	179.04 (19)
O2—C1—C2—C10	-172.9 (2)	C5-C4-N1-C3	173.72 (18)
O1—C1—C2—C10	5.9 (3)	C9—C4—N1—C3	-4.4 (3)
C10-C2-C3-N1	1.8 (3)	C5—C4—N1—C11	-1.7 (3)
C1—C2—C3—N1	-176.44 (18)	C9—C4—N1—C11	-179.82 (17)
N1—C4—C5—C6	-178.05 (18)	C12-C11-N1-C3	-91.1 (2)
C9—C4—C5—C6	0.1 (3)	C12—C11—N1—C4	84.3 (2)
C4—C5—C6—N2	-179.66 (18)	C5—C6—N2—C13	8.6 (3)
C4—C5—C6—C7	-2.3 (3)	C7—C6—N2—C13	-168.65 (18)
C5—C6—C7—C8	3.2 (3)	C5—C6—N2—C15	-122.3 (2)
N2—C6—C7—C8	-179.29 (19)	C7—C6—N2—C15	60.4 (2)
C5—C6—C7—F1	-174.77 (18)	C14—C13—N2—C6	166.40 (17)
N2—C6—C7—F1	2.7 (3)	C14—C13—N2—C15	-59.8 (2)
F1—C7—C8—C9	176.32 (19)	C16—C15—N2—C6	-165.98 (18)
C6—C7—C8—C9	-1.7 (3)	C16—C15—N2—C13	59.2 (2)
N1—C4—C9—C8	179.74 (17)	C15—C16—N3—C14	57.5 (2)
C5—C4—C9—C8	1.6 (3)	C15—C16—N3—C17	178.60 (19)

N1—C4—C9—C10	0.4 (3)	C13—C14—N3—C16	-58.4 (2)
C5—C4—C9—C10	-177.81 (17)	C13—C14—N3—C17	-178.33 (19)
C7—C8—C9—C4	-0.8 (3)	O2-C1-O1-Co1	175.48 (15)
C7—C8—C9—C10	178.62 (19)	C2-C1-O1-Co1	-3.2 (3)
C3—C2—C10—O3	176.41 (18)	O3 ⁱ —Co1—O1—C1	-179.59 (18)
C1—C2—C10—O3	-5.5 (3)	O3—Co1—O1—C1	0.41 (18)
C3—C2—C10—C9	-5.5 (3)	O5W—Co1—O1—C1	91.75 (19)
C1—C2—C10—C9	172.50 (17)	O5W ⁱ —Co1—O1—C1	-88.25 (19)
C4—C9—C10—O3	-177.22 (18)	C2-C10-O3-Co1	2.1 (3)
C8—C9—C10—O3	3.4 (3)	C9—C10—O3—Co1	-175.93 (13)
C4—C9—C10—C2	4.6 (3)	O1—Co1—O3—C10	0.37 (17)
C8—C9—C10—C2	-174.79 (18)	O1 ⁱ —Co1—O3—C10	-179.63 (17)
N2-C13-C14-N3	60.3 (2)	O5W—Co1—O3—C10	-89.65 (17)
N2-C15-C16-N3	-58.6 (2)	O5W ⁱ —Co1—O3—C10	90.35 (17)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O4W—H4W1···O1W	0.844 (10)	2.083 (12)	2.879 (3)	157 (2)	
O3W—H3W1···O1W ⁱⁱ	0.848 (10)	2.035 (12)	2.859 (3)	164 (3)	
O3W—H3W2···O2 ⁱⁱⁱ	0.851 (10)	1.899 (10)	2.747 (2)	174 (3)	
O1W—H1W1···O1 ^{iv}	0.846 (10)	1.911 (11)	2.754 (2)	175 (2)	
$O1W$ — $H1W2$ ··· $O3W^{v}$	0.849 (10)	2.129 (18)	2.877 (3)	147 (2)	
O2W—H2W1···O3W	0.840 (9)	1.979 (11)	2.813 (3)	171 (3)	
O2W—H2W2…O5W	0.840 (9)	2.066 (11)	2.904 (3)	175 (2)	
O5W—H5W1···N3 ^{vi}	0.862 (10)	2.029 (12)	2.870 (3)	165 (3)	
O5W—H5W2···O4W ^{vii}	0.856 (10)	2.064 (11)	2.918 (3)	175 (2)	
O4W—H4W2···O2W ^{viii}	0.835 (10)	1.980 (11)	2.787 (3)	162 (2)	
Symmetry codes: (ii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (iii) <i>x</i> , <i>y</i> +1, <i>z</i> ; (iv) <i>x</i> , <i>y</i> , <i>z</i> +1; (v) <i>x</i> , <i>y</i> -1, <i>z</i> +1; (vi) <i>x</i> +1, <i>y</i> , <i>z</i> -1; (vii) <i>x</i> , <i>y</i> , <i>z</i> -1; (viii) - <i>x</i> +2, - <i>y</i> +1,					

-z+1.

